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An efficient functionalization of the quinolizinium system is reported. The reaction of the four isomeric
bromoquinolizinium salts with different organotrifluoroborates afforded alkyl-, vinyl-, aryl-, and hetero-
aryl quinolizinium derivatives in moderate or good yields. Reactions are carried out in water using a
counterion exchange for the isolation of the cationic-coupled compounds.
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Since the discovery of the use of organic molecules for the gen-
eration of optical second harmonics (SHG) by Rentzepis and Hei-
Imeier,! one of the main objectives in the development of
materials for nonlinear optical applications is the search for highly
active chromophores with large second-order polarizabilities. The
majority of chromophores studied to date, whether metal-contain-
ing or purely organic, contain an electron-donor group (D)
connected to an electron acceptor (A) through a polarizable mt-con-
jugated bridge. Thus, a variety of donor-acceptor organic mole-
cules containing different acceptors have been reported.?

The use of charge acceptors in D-n-A NLO-phores has barely
been explored to date, with pyridinium salts being the most widely
studied acceptors in this context.> Specifically, several studies on
trans-4'-(dimethylamino)-N-methyl-4-stilbazolium tosylate (DAST)
have been reported®** (Fig. 1).

Recently, we carried out a study, in which different azinium
(pyridinium, quinolinium, and isoquinolinium), azolium (imidazo-
lium and benzimidazolium), and azonia (quinolizinium and aza-
quinoliziniun) cations were compared as potential acceptor units
in a variety of NLO-catiophores. Initial results proved that azonia
salts® act as the most powerful cationic acceptors, conferring on
different types of push-pull charged chromophores the largest sec-
ond-order polarizabilities ().® However, the synthesis and func-
tionalization of the quinolizinium and related heteroaromatic
cations still remain relatively unexplored, a situation that results
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in low availability of quinolizinium-type derivatives for NLO
studies.

Although we have made significant contributions in this field
through the application of palladium-catalyzed” and metathesis
reactions® to azonia cations, the functionalization of quinolizini-
um-type cations still suffers from limitations, particularly for some
of the four possible positions in this heterocyclic system. We report
here an improved and greener procedure that will allow straight-
forward and efficient access to charged chromophores based on
quinolizinium-type cations as acceptor units.

Previous comparative studies from our laboratory showed that
the Stille coupling reaction was the most efficient procedure in
comparison to other palladium-catalyzed cross-coupling reactions
such as the Suzuki and Negishi reactions to produce moderate (in
most cases) or high yields of some aryl-, heteroaryl-, and alkynyl-
substituted quinolizinium cations.”
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Figure 1. Examples of D--A NLO-phores based on pyridinium acceptor units.
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However, we were unable to achieve the coupling reaction with
stannanes bearing Csp>-hybridized substituents, and the reaction
of tributylvinylstannane failed to give the 4-vinyl-quinolizinium
and gave low yields (10-22%) of the 2- and 3-isomers. The need
for a more efficient procedure for the preparation of different quin-
olizinium derivatives led us to re-investigate the Suzuki-Miyaura
reaction using alternative organoborons as coupling partners and
specifically potassium organotrifluoroborates.>!°

Initially, the reaction of the potassium phenyltrifluoroborate
and 2-bromoquinolizinium bromide (2) was attempted in order
to optimise the reaction conditions in terms of catalysts, ligands,
bases, and solvents. Our first choices were the optimized condi-
tions used in the Suzuki coupling reaction between 2 and phenyl-
boronic acid’® (Table 1, entry 1). However, under these conditions,
the reaction did not proceed, with most of the starting quinolizini-
um salt recovered after 24 h.

Similar results were obtained either by heating the reaction at
80 °C or by using biphenyltertbutylphosphine as an alternative li-
gand, although in both cases traces of the coupling product were
detected. Other conditions commonly employed in the reaction
of potassium aryltrifluoroborates and electron-poor aryl halides
were also tested.®®® The results are summarized in Table 1, and en-
tries 4 and 5 show that when the reaction was carried out under
ligandless conditions in the presence of PdCl,(dppf)-CH,Cl, and
Et3N (or Hiinigs base) in ethanol or methanol as solvent, extensive
decomposition occurred. Surprisingly, the reaction carried out in
the presence of Pd(OAc), and K,COs in EtOH/H,0 (1:1) led to 4-
ethoxyquinolizinium bromide in variable yields (43-56%), and
similar results were obtained on replacing ethanol by methanol
as the solvent (Table 1, entry 6). Only under aqueous conditions
did the reaction proceed, although in this case further difficulties
arose because the coupling product was highly soluble in the reac-
tion medium, and it was difficult to purify. Consequently, the yield
of the isolated compound was only moderate (56% in the best
case).

Attempts to find more suitable conditions for the isolation and
purification of the cross-coupling product led us to exchange the
counterion in a search for a less soluble salt that could be isolated
more easily from the aqueous medium. Fortunately, one of the var-
ious counterions tested, hexafluorophosphate gave a salt that was
quite insoluble in water, thus allowing the isolation of 2a in good
yield with a high degree of purity by simple filtration (Table 1, en-
try 8). In a typical experimental procedure, the bromide salt of 2a

Table 1
Optimization of the Synthesis of 2a
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formed in the reaction medium was treated with ammonium hexa-
fluorophosphate to give the hexafluorophosphate salt as a brown
precipitate in 76% yield.

This promising result led us to examine the generality of the
process for the other three bromoquinolizinium isomers 1, 3, and
4. The results are summarized in Table 2. The reaction conditions
proved to be more efficient for the preparation of the four isomeric
phenylquinolizinium compounds than those used previously un-
der the Suzuki and Stille conditions,”® with yields clearly improved
in all cases (yields for the Stille couplings are shown in brackets in
Table 2). The lower yield obtained for 4a is a result, at least in part,
of the low purity of this compound when isolated directly by filtra-
tion from the reaction medium. Further purification by column
chromatography was needed to separate this compound from
other salts and as a consequence, the isolated yield of the pure
compound was somewhat lower than those obtained for 1a, 2a,
and 3a.

As stated above, all our previous attempts to carry out the cou-
pling reaction of bromoquinolizinium salts with sp>-hybridized
carbons on the stannane failed as they were unsuitable coupling
partners. However, under the optimized conditions for 2a, we
found that the reaction of potassium benzyltrifluoroborate with
1-4 afforded the corresponding four coupled products 1b-4b in
moderate yield.

Encouraged by these successful results, we sought to apply the
method to the preparation of vinyl quinolizinium salts, which are
interesting substrates as potential partners in Heck reactions to
prepare quinolizinium-based NLO-catiophores. These quinolizini-
um derivatives were obtained in very low yields in the Stille cou-
pling conditions on positions C-2 and C-3 of the quinolizinium
system, and the reaction failed in the C-4 position. Now the cou-
pling reaction between potassium vinyltrifluoroborate!! and 1-4
afforded moderate or good yields of the four isomeric vinylquino-
liziniums 1c-4c.

Finally, studies concerning the scope of the aryl component in
the reaction were undertaken. In addition to phenyltrifluoroborate,
aryltrifluoroborates bearing electron-donating and electron-with-
drawing groups and a heteroaryltrifluoroborate were also exam-
ined. Not surprisingly, bromoquinoliziniums 1-4 coupled cleanly
using our standard conditions with high yields being obtained if
the coupling product can be isolated by simple filtration and lower
yields being achieved if further purification was needed (Table 2,
see 1e vs 2-4e).

X 24

Entry Catalyst Reaction conditions Yield® (%)
1 4% Pd,(dba)s;/8% P(o-tol)s 1.5 equiv K,COs3, DMF, rt, Ar., 24 h NR

2 4% Pd,(dba)s;/8% P(o-tol)s 1.5 equiv K,CO3, DMF, 80 °C, Ar, 24 h Traces

3 4% Pd,(dba);/8% biphenyltertbutylphosphine 1.5 equiv K,COs3, DMF, rt, Ar., 24 h Traces

4 0.5% PdCly(dppf)-CH,Cl, 3 equiv Et3N, EtOH, reflux, 19 h Dec”

5 0.5% PdCl,(dppf)-CH,Cl, 3 equiv (iPr),EtN, MeOH, reflux, 19 h Dec”

6 1% Pd(OAc), 3 equiv K,COs, EtOH/H,0, 65 °C, 5 h -

7 1% Pd(OAc), 3 equiv K,CO0s3, H,0, 65°C, 5h 56

8 1% Pd(OAc), 3 equiv K,COs3, H>0, 65 °C, 5 h, then H4NPFg 76

NR: no reaction.
2 Yields of isolated product.
> Decomposition.
€ From this reaction 4-ethoxy quinolizinium was formed (43-56% yield).
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Cross-coupling reactions of potassium organotrifluoroborates with bromo quinolizinium bromides 1-4

1. Pd(OAc),
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For all compounds, yields are given for isolated products as the hexafluorophosphate. Yields in brackets are referred to those obtained under Stille cross-coupling conditions.
2 Compounds were further purified by column chromatography.
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In conclusion, we have demonstrated that organotrifluoroborates
can be used as efficient partners for the Suzuki coupling reaction with
the four isomeric bromo quinolizinium bromides. This cross-coupling
reaction allows the synthesis of new quinolizinium derivatives,
which were not achieved by the Stille reaction or clearly improves
the yields of those previously obtained by this reaction. Moreover,
the ease with which these potassium organotrifluoroborates reacted
with quinolizinium salts in water and the coupling products can be
isolated is a further advantage of the procedure and provides a new
means for accessing a great variety of substituted azonia cations.
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